7 research outputs found

    The potential of additive manufacturing in the smart factory industrial 4.0: A review

    Get PDF
    Additive manufacturing (AM) or three-dimensional (3D) printing has introduced a novel production method in design, manufacturing, and distribution to end-users. This technology has provided great freedom in design for creating complex components, highly customizable products, and efficient waste minimization. The last industrial revolution, namely industry 4.0, employs the integration of smart manufacturing systems and developed information technologies. Accordingly, AM plays a principal role in industry 4.0 thanks to numerous benefits, such as time and material saving, rapid prototyping, high efficiency, and decentralized production methods. This review paper is to organize a comprehensive study on AM technology and present the latest achievements and industrial applications. Besides that, this paper investigates the sustainability dimensions of the AM process and the added values in economic, social, and environment sections. Finally, the paper concludes by pointing out the future trend of AM in technology, applications, and materials aspects that have the potential to come up with new ideas for the future of AM explorations

    Coating Techniques for Functional Enhancement of Metal Implants for Bone Replacement: A Review

    No full text
    To facilitate patient healing in injuries and bone fractures, metallic implants have been in use for a long time. As metallic biomaterials have offered desirable mechanical strength higher than the stiffness of human bone, they have maintained their place. However, in many case studies, it has been observed that these metallic biomaterials undergo a series of corrosion reactions in human body fluid. The products of these reactions are released metallic ions, which are toxic in high dosages. On the other hand, as these metallic implants have different material structures and compositions than that of human bone, the process of healing takes a longer time and bone/implant interface forms slower. To resolve this issue, researchers have proposed depositing coatings, such as hydroxyapatite (HA), polycaprolactone (PCL), metallic oxides (e.g., TiO2, Al2O3), etc., on implant substrates in order to enhance bone/implant interaction while covering the substrate from corrosion. Due to many useful HA characteristics, the outcome of various studies has proved that after coating with HA, the implants enjoy enhanced corrosion resistance and less metallic ion release while the bone ingrowth has been increased. As a result, a significant reduction in patient healing time with less loss of mechanical strength of implants has been achieved. Some of the most reliable coating processes for biomaterials, to date, capable of depositing HA on implant substrate are known as sol-gel, high-velocity oxy-fuel-based deposition, plasma spraying, and electrochemical coatings. In this article, all these coating methods are categorized and investigated, and a comparative study of these techniques is presented

    On Coating Techniques for Surface Protection: A Review

    No full text
    A wide variety of coating methods and materials are available for different coating applications with a common purpose of protecting a part or structure exposed to mechanical or chemical damage. A benefit of this protective function is to decrease manufacturing cost since fabrication of new parts is not needed. Available coating materials include hard and stiff metallic alloys, ceramics, bio-glasses, polymers, and engineered plastic materials, giving designers a variety freedom of choices for durable protection. To date, numerous processes such as physical/chemical vapor deposition, micro-arc oxidation, sol–gel, thermal spraying, and electrodeposition processes have been introduced and investigated. Although each of these processes provides advantages, there are always drawbacks limiting their application. However, there are many solutions to overcome deficiencies of coating techniques by using the benefits of each process in a multi-method coating. In this article, these coating methods are categorized, and compared. By developing more advanced coating techniques and materials it is possible to enhance the qualities of protection in the future

    Laser welding of nickel-titanium (NiTi) shape memory alloys

    No full text
    Nickel-titanium (NiTi) shape memory alloys (SMAs) with outstanding shape memory and superelasticity effects are interesting candidates for a multitude of applications ranging from small-scale structures, such as microsensors and stents, to large-scale components used in aviation and automotive industries. After a mechanical deformation, SMAs can resume their initial shape which makes them an ideal candidate material to be used in smart components for various applications. A practical method for joining similar and dissimilar NiTi SMAs is laser welding. However, the thermal effect associated with the laser welding procedure influences the transformation temperature of the welded parts that will significantly impact their super elasticity and/or shape memory effect characteristics. This chapter deals with the microstructural, metallurgical, and mechanical investigations of the laser welding process as well as suggesting effective methods to improve the functionality of the welded parts of NiTi alloys
    corecore